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ABSTRACT

Year-to-year economy-wide measures of income distribution, such as the Gini

coefficient, are rarely available for long periods except in a few developed countries, and

as a result few analyses of year-to-year changes in inequality exist. But wage and earnings

data by industrial sectors are readily available for many countries over long time frames.

This paper proposes the application of the between-group component of the Theil index to

data on wages, earnings and employment by industrial classification, in order to measure

the evolution of wage or earnings inequality through time. We provide formal criteria

under which such a between-group Theil statistic can reasonably be assumed to give

results that also track the (unobserved) evolution of inequality within industries. While the

evolution of inequality in manufacturing earnings cannot be taken as per se indicating the

larger movements of inequality in household incomes, including those outside the

manufacturing sector, we argue on theoretical grounds that the two will rarely move in

opposite directions.  We conclude with an empirical application to the case of Brazil, an

important developing country for which economy-wide Gini coefficients are scarce, but

for which a between-industries Theil statistic may be computed on a monthly basis as far

back as 1976.
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1- INTRODUCTION

 Most empirical work on inequality uses measures that are based on household

surveys. These aim to provide a comprehensive overview of income inequalities, covering

all social strata and comparable both through time and between countries. Gini coefficients

are the index mostly commonly computed from these sources, though various quintile

ratios are also frequently deployed.

 Deininger and Squire (1996) have compiled an impressive data set of available Gini

and quintile measures of inequality. Yet, the limitations of this data for studies of the

evolution of inequality through time are evident from Table 1, which shows the number of

data points in a 26 year period (1970-1995) for those countries for which more than three

data points are available.  Only four countries show data for virtually every year, and most

do not have data for even half of the years. And these gaps are irreparable. There is no

way to construct Gini coefficients for countries and years for which adequate household

sample surveys were never conducted in the first place.

 

 Table 1- Number of Data Points in the High Quality Deininguer and Squire (1996) Data-set Between

1970 and 1995 (only countries with more than 3 data points are shown).

 Australia  8   France  4   Norway  7   Taiwan  23

 Bangladesh  8   Germany  5   Pakistan  8   Thailand  6

 Brazil  14   Hungary  7   Panama  4   UK  22

 Bulgaria  24   India  12   Peru  4   USA  22

 Canada  17   Indonesia  9   Philippines  4   Venezuela  9

 China  12   Italy  15   Poland  17    

 Colombia  7   Japan  16   Portugal  4    

 Costa Rica  8   Korea, R.  7   Singapore  6    

 Cote d'Ivoire  5   Mexico  5   Spain  7    

 Denmark  4   Netherlands  12   Sri Lanka  6    

 Finland  10   New Zealand  12   Sweden  14    
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 Fortunately, the decomposability properties of the Theil measure make it possible

in part to repair this gap, albeit in most cases only for the limited span of the

manufacturing economy. In particular, one can compute between-group measure of

inequality  (T′ hereafter) across industrial sectors, as delineated by national or international

industrial classification schemes.  Data on industrial wages, earnings and employment are

very easily found.  The data are also reasonably reliable; there is little reason to suspect

that they are faked in any systematic way that would affect a Theil measure. Where gross

errors do occasionally enter into the recording, the regularity and hierarchical structure of

the data sets often means that these can be detected.

 

 2- THEIL’S INEQUALITY MEASURE

 Henri Theil (1967) first noted the possibility of using Claude Shannon’s (1948)

information theory to produce measures of income inequality. Shannon’s theory was

motivated by the need to measure the value of information. Shannon argued that the more

unexpected an event is, the higher the yield of information it would produce. To formalize

this idea, Shannon proposed to measure the information content of an event as a

decreasing function of the probability of its occurrence. Adding some axiomatic principles,

most importantly that independent events should yield information corresponding to the

sum of the individual events’ information, Shannon chose the logarithm of the inverse of

the probability as the way to translate probabilities into information. The logarithm allows

the decomposition of the multiplicative probabilities into additive information content.

 If we have a set of n events, one of which we are certain is going to occur, and

each with a probability xi of occurring, then xi
i

n

=
∑ =

1

1  and the expected information

content is given by Shannon’s measure:

 [1] H x
xi

i

n

i

=
=
∑

1

1log

 The information content is zero when one of the events has probability 1; we draw no

information from the occurrence of an event we are sure is going to happen. The
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information content is maximum when x
n

i ni = =1
1, ,..., ; in this case H = log n. In other

words, maximum information is derived from the occurrence of one event in a context of

maximum uncertainty. To borrow from thermodynamics, maximum information is derived

from a state of maximum disorder, or maximum entropy. This is the reason why entropy is

used as a synonym of expected information.

 Theil was attracted to information theory because it might lead toward a general

partitioning theory. Beyond dividing certainty (probability 1) into various uncertain

probabilities, information theory presented an opportunity to devise measures for the way

in which some set is divided into subsets. Theil considered it natural to apply information

theory to the partitioning of overall income throughout the taxpayers of a country. If we

were to apply Shannon’s measure directly to individual shares of income, we would have a

measure of equality (recall that the maximum of Shannon’s measure occurs when all the

shares are equal). Therefore, Theil proposed to subtract Shannon’s measure from log n,

leading to his well-known measure of inequality:

 [2] T
n

r ri i
i

n

=
=
∑1

1

. log

 Where ri is the ratio between individual income (yi) and average income (µY):

r
y

y

ni
i

Y
Y

i
i

n

= = =
∑

µ
µ,  1 . The value of the Theil index (T index) is a monotonically increasing

measure of inequality in the distribution of income, bounded by [ ]T n∈ 0, log .

 Theil argues that the fact that T does not have an upper bound but depends always

on population size is desirable. Consider a society with only two individuals in which one

earns all the income. In this case, T = log 2. Next, consider another society in which all the

income is again concentrated in one person, but the overall population is now one

thousand. In this case, T = log 1000, a much higher value as desired in a much more

unequal society. Consider now a different situation: if the division of income in this larger

society were in the same proportion as in the first (half of the population having all the
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income), then we would have again T = log 2 for the larger society, as is to be expected.

In general, Theil showed that T = log
1
θ

, in which θ is the proportion of the population

having all the income (1/2 in our last example). This is independent of the size of the

population.

 Theil’s measure has all of the desirable properties of an inequality measure: it is

symmetric (invariance under permutations of individuals), replication invariant

(independent of population replications), mean independent (invariant under scalar

multiplication of income), and satisfies the Pigou-Dalton property (inequality increases as

a result of a regressive transfer). It is also Lorenz-consistent, meaning that it agrees with

the quasi-ordering that can be derived from comparing Lorenz curves.

 An important characteristic of entropy-based indexes such as the Theil index is that

they are decomposable. If individuals are grouped in a mutually exclusive, completely

exhaustive way, overall inequality can be separated into a between-group component and

a within-group component. If we consider that the population is divided into m groups, g1,

g2, ..., gm, each with nj individuals, j=1, ..., m, then the decomposition takes the self-similar

form of a fractal:

 [3]

T p R R p R T

T
n

r r

j j
j

m

j j
j

m

j j

j
j

i
i g

i
j

= +

=













= =

∈

∑ ∑

∑

1 1

1

log

log

 

 The population proportion in each group is represented by p
n

nj
j=  and the ratio of

average group income to overall average income by R j
j

Y

=
µ
µ

.
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 There are several reasons why it may be of interest to have a decomposable

measure of inequality. One might be interested in analyzing the functional distribution of

income according to some criterion that divides the overall population into groups.

Examples are race, gender (both of which were explored by Theil in 1967), education

level, economic sector, age, to name a few. Another reason might be associated with

geography (different regions, like, say, states or countries, which were explored also by

Theil in 1967). Another possibility is study differences in urban vs. rural populations. Yet

another reason may be related to the differentiation of sources of income.

 A further important motivation, again recognized by Theil himself, is associated

with data. Data on income is often reported in income brackets, which do not give

information on what is the distribution of income within the income bracket. Theil

explored how the decomposition properties of the T index might help in devising measures

of inequality not based on percentiles.

 In this paper we go beyond these efforts, to explore the use of T to construct long

and dense time-series of inequality measures from industrial data. We are interested in

looking at the time evolution of inequality, to allow the study of the processes that drive

and determine changes in inequality. Problems associated with data availability and with

the choice of the instruments to measure inequality have hindered the possibility of

constructing long, dense-time series, as we saw above.

 Clearly, T′ constructed across industrial sectors yields an incomplete picture of

inequality at each point in time.;  T′ is not a substitute for T. But, we argue, the potential

for constructing long and dense time series outweighs this disadvantage.  The question is,

to what extent do changes in T′  measure changes in T?  Can we use the change in T′  as a

proxy for the evolution of inequality in the larger distribution from which T′  is

computed?. Section 3 quantifies the “information loss” when one uses T′ instead of T. In

Section 4 we discuss procedures for isolating income-change from population-shift effects,

so that we can reduce the range of uncertainty associated with inferring the change in T

from the change in T′.  Finally, in Section 5, we provide some empirical illustrations using

data for Brazil.
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3- GOING FROM T TO T′: WHAT IS INCLUDED, AND WHAT IS LEFT OUT?

The between-group component of Theil’s T can be computed from wage or earnings

data aggregated by industrial sectors in a very large number of countries. All that is

required are measures of total payrolls or the wage bill, and measures of employment or

hours, for consistently organized industrial categories. However, inequality overall

depends also on the inequality within each group, and on the change in population shares

across groups as time passes. Therefore, it is of interest to examine these two effects and

to assess how large their impact on inequality may be. In this section we discuss how to

account for the left-out inequality associated with the unobservable within-group

inequality. We leave for the next section a discussion of how to isolate population effects.

We are primarily interested in a dynamic analysis of inequality, in how inequality

changes over time. Therefore, we focus on the behavior of rates of change.

From [3] we can compute the change in inequality over time:

[4] ( ) ( )[ ]& log . & log . & &T R R R T p p R p p T R p R Tj j j j j j j j j j j j j j
j

m

= + + + + +
=
∑

1

and also the change over time exclusively associated with the between group component:

[5] ( )[ ]& ' log & log . &T R R p p R p Rj j j j j j j
j

m

 = + +
=
∑

1

This means that [4] can be written as:

[6]
( )& & '

.
&T T

d R p

dt
T R p T

j j
j j j j

j

m

= + +










=

∑ 
1

From [6], the only unobservable components are Tj  and &Tj . Therefore, we can measure

the first term on the right hand of [6], but we cannot measure the second term. This non-

measurable component corresponds to the change unaccounted for by the between group

component change, which is given by [5]. However, we can state conditions under which

the effect of the within group change is likely to be small.



8

The within group change is the time derivative of the product Rj.pj.Tj, and

therefore, with broad generality, within group changes will be small whenever changes in

Rj.pj.Tj are small. Since

[7] R
p

Y
Yj

j

j= 1 .

where Yj is group j’s total income, the product Rj.pj.Tj can be reduced to ( )Y Y Tj j. , which

is independent of pj. Finally, we can do the following simplification

[8]
( ) ( )[ ]d R p

dt
T R p T

Y
Y

T T g gj j
j j j j

j
j j j

.
& &+ = + −

where g Y Y= &  and g Y Yj j j= & .

Two features are immediately apparent from [8]. First, the within group Theil

change is independent of the employment structure, and depends exclusively on the

relative levels of average wages and on the relative rates of wage change, besides the

unobservable Tj  and &Tj . Secondly, there are two contributions to the within group

change, one related with the obvious group endogenous change in the distribution over

time, &Tj , and a second reflecting the effect of relative change in the wage structure. The

term (gj - g) can be understood as the relative growth rate of average wages for group j.

How large is each of the terms given by [8]? We know that Y Yj  is between zero

and one. Moreover, if the number of groups, m, is relatively large, then Y Yj  is likely to

be small. Consequently, the impact of Y Yj  on the expression is always be to reduce the

effect of the within group component on the time variation of the Theil index as a whole.

If gj~g, for every j, then the effect associated with structural wage change is low.

There is no reason why each group’s rate of wage changes should be equal and close to g,

but there is a trade-off. Since g is the overall growth rate, if one or a few group rates of

growth are higher than g, then it must be that the remaining are lower. Therefore, the

coefficients are likely to cancel out on average, and the overall contribution of relative

wage change to within-group inequality is likely to be small.
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The remaining problem is that we do not know the levels Tj , the extent of

inequality within each group.  Since the changes in Tj  are also unknown, there is not

much that one can do with generality from this point on.  Nonetheless, we can estimate the

maximum impact of this unobservable effect.  We know that ( ) ( )[ ]T t n tj
MAX

j= log , that

is, the maximum value of the inequality within each group is equal to the log of the

population in that group.  It is much more difficult to determine a maximum for the rate of

change of the within group inequality. In principle, &Tj could be almost infinite, since we

could go from any distribution of income to a situation under which all the income in the

group is concentrated in one individual. However, this is not very likely to happen

instantaneously. If we move from the continuous analysis to a discrete analysis across

time, the highest change occurs when inequality moves from zero to log (nj) from t to t+1,

or from log (nj) to zero from one period to the other. Note that there is a duality here: the

highest possible change implies that at one of the periods t or t+1 within group inequality

is zero, and the impact of the level component is, therefore, zero. For example, when the

within group inequality jumps from virtually zero to ( ) ( )[ ]T t n tj
MAX

j= log , the Tj (t) terms

would have contributed very little to overall inequality before the jump.

Taking first the issue of the maximum inequality level within group, consider that

the upper bound for the summation on the right hand side of [8] occurs when all groups

have their maximum level of inequality (all the group’s income in one individual). And

though this is an unlikely and unstable situation, we will assume that all groups will remain

with their maximum level of inequality. In this situation & &
T

p
pj

j

j

= . Introducing this last

expression and ( ) ( )[ ]T t n tj
MAX

j= log  in [6], we get that when within group inequality is

kept at its maximum level, the maximum impact of the unobservable component is given

by:
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[9] ( )d
Y
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p
g g nwithin

MAX j j

j
j j

j

m

= + −






















=
∑ &

.log
1

From a formal point of view it is worthwhile to note the dependency of this

expression on the rate of change of the employment structure. The term in square brackets

dependss only on rates of change in employment and wages, with the weight for the

relative wage growth being now given by the log of the groups’ population. All the

variables in [9] are observable, but expression [9] still cannot be used empirically, since it

contains differential terms. Expressing the growth rates by logarithmic differences, as is

standard practice, we obtain an expression that can be used with discrete data:

[10] ( ) ( )
( )
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( )
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( )

( )
( ) ( )d t t

Y t

Y t

p t

p t

Y t
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Y t
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1

1 1

1
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We can thus express the maximum changes in the within group Theil exclusively with

observable variables. First, we will assume that from t or t+1 the within group inequality

will jump, for every group, from 0 to the maximum level. In this case, again expressing the

growth rates by logarithmic differences:

[11] ( ) ( )
( ) ( )[ ] ( )

( )
( )
( )∆ within

MAX j
j

j

jj

m

t t
Y t

Y t
n t

Y t

Y t
Y t
Y t

+ + =
+
+

+ +
+
+



































=
∑, .log . log .1

1

1
1 1
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The maximum change in the opposite direction, from the maximum level of within

inequality to zero, is given by

[12] ( ) ( )
( ) ( )[ ]∆ within

MAX j
j

j

m

t t
Y t

Y t
n t

− + = −
+
+







=

∑, .log1
1

11

Expressions [9] through [11] include only measurable variables, and can be computed

from data on industrial wages. However, one must bear in mind that these estimates are

certainly highly exaggerated. We are assuming the unrealistic situation under which eiither

all income in each group is concentrated in a single individual, or else the change between

consecutive periods goes from one extreme to the other of  possible within group Theil

values,  that is from zero to log (nj).
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How big are changes in within-group inequality likely to prove in practice?  It is

possible to consider this issue by reflecting on the nature of industrial classification

schemes.  Consider first the extreme, and once again unrealistic, case where industrial

classifications had no intrinsic economic meaning, but are simply a random classification

system whose only virtue, for our purposes, is that each factory retains its identifying label

through time and is therefore recorded in the same category every year.  In this case,  the

fractal character of the distribution, and of the Theil index, assures us that the change in T′
is very close the change in T.  This result is obvious from the assumption of randomness:.

Changes within groups must also be happening across groups; there is no basis for within-

group inequalities to be changing at a different rate from between group inequalities, other

than random differences which are likely in any event to be offsetting once groups are

added together.

Now consider the more realistic case where industrial classification schemes

actually do, to some imperfect extent, distinguish between qualitatively differing types of

economic activity.  The effect of this is again obvious.  Relative to the random-taxonomy

case, some within group and unobservable variations must move to the between group

part of the expression, where they can be observed.  Why?  Because industries now mean

something, and if they mean anything at all, the effect must be to impose a measure of

homogeneity on entities classified together, and a measure of distinctiveness to entities

classified as being in different groups.

Pursuing this line of thought further, consider that “industries” are in fact

collections of similar factories, which operate from one year to the next with labor forces,

internal wage structures, managerial hierarchies and technologies that change fairly little.

It seems clear that while within-group inequalities are likely to be large relative to

differences between group averages, the internal rigidity of industrial structure tends to

assure that changes in within group inequalities in an industrial classification will be small

relative to changes between groups. Therefore, a measure of the change in T′ is likely to

be a robust estimate of the change in T, so long as changes in employment structures and

the distribution of the workforce across categories are not too large.
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4- SEPARATING OUT EMPLOYMENT EFFECTS

We now turn to the effect of changes in employment structures on T′.   Our

strategy relies on Theil’s own hypothetical question: what would have happened to

inequality if employment shares had not changed?  Taking the beginning of the time-series

as a starting point, then, if employment shares do not change, equation [5] simplifies to:

[13] ( )& ' log . &T p R RF j j j
j

m

 = +
=
∑ 1

1

What are the implications of a fixed employment structure for our estimates of the

maximum change in the within group component of T? We established that the within

group component, and its changes over time, are independent of the employment

structure.  However, when estimating the maximum impact due to high levels of within

group inequality, expression [9] shows a dependency on employment changes. With the

assumption of a fixed employment structure, [9] turns to:

[14] ( )d
Y
Y

g g nwithin F
MAX

j

m
j

j j, . . .log= −







=
∑

1

Expression [14] can easily be turned into a discrete form, amenable to empirical use, using

the same procedure discussed above when moving from equation [9] to [10].

In short, isolating the effect of changes in employment structure on the Theil index

is entirely straightforward, and requires only observable data.  In the next section we

illustrate the  practical effect of changing employment structures on inequality in the case

of Brazil.
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5- EMPIRICAL APPLICATION TO THE CASE OF BRAZIL

We will now compute T′ for the case of Brazil using monthly data on wages and

employment for 17 industrial sectors. Data are monthly for the period 1976-1995, leading

to the long and dense, continuous time-series of Figure 1.
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Figure 1- Monthly T′ for 17 Industrial Sectors in Brazil 1976-1996.

In Figure 2 we plot the series after smoothing, using a 12 month moving average. Also

plotted here are the “high-quality” Gini coefficients from Deininger and Squire’s (1996)

data set for Brazil.
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Figure 2- Smoothed T′ Series for 17 Industrial Sectors in Brazil 1976-1996 and Available High
Quality Gini Coefficients.

To determine how much of the change in inequality overall has not been accounted

for, we begin with an informal discussion of the structure of the data. First, consider the

wage structure. The proportion of total wages held by each industrial group is depicted in

Figure 3, which shows the evolution of each industry wage’s share. The highest positive

rate of change is 7% and the highest negative rate of change is -4.5%. Average rates of

change, both negative and positive, are just over 1%. The mechanical sector has the

highest share, which reaches just over 20%. Steel and transportation have shares above

10%, but the remaining fourteen sectors have shares below 8%.
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Figure 3- Smoothed Shares of Wages for 17 Industrial Sectors in Brazil.

Figure 4 shows the evolution of the employment structure. Despite being irrelevant

to the estimate of the unobservable impact given by [8], which is independent from

employment, this effect is important for the maximum potential impact estimate given by

[9]. Four groups have consistently more than 10% of employment, and one, food, reaches

a high of 19% in 1992 and 1993. The next four industries in employment share, non-

metallic, textiles, transportation, and electric/communications, have shares that oscillate

between 5% and under 10%. More importantly, since [9] depends only on changes in

employment, Figure 4 shows that there are no sharp transitions in population shares. In

fact, the highest positive rate of change is 3% and the highest negative -6% (average

growth rates, both positive and negative, are about 1%). From this we infer that changing

population shares will rarely affect T by very much.
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Figure 4- Smoothed Shares of Employment for 17 Industrial Sectors in Brazil.

Given what we know about the changes of the shares of wages and employment,

we can explore what the outcomes of  [10] through [12] are likely to be. Since the

structure of wages changes little from one instant in time to the other, the following

approximations are valid:

[15]
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( )
( )

( )
( )

Y t

Y t
Y t
Y t

Y t

Y t
Yj t
Y t

Y t

Y t
Y t
Y t

j

j

j j

j

+
+

=
+
+















 ≈ ⇒

+
+













≈
1

1

1

1
1

1

1
0. log .

Therefore, expression [10] can be approximated by:
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and expression [11] by:
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Expression [12] is unaffected by approximation [15]. Note, however, that [17] is almost

symmetric with [12]; whenever ( ) ( )n t n tj j≈ + 1 , we should expect

( ) ( )∆ ∆within
MAX

within
MAXt t t t

+ −+ ≈− +, ,1 1 .
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In both [17] and [12] ( )[ ]log n j •  tends to smooth the differences across industries.

Taking the extreme cases, employment in the food industries is around 500,000 and in the

soap and perfume industries around 20,000; when logs are taken, the values are 13 for

food and 10 for soap and perfume. Likewise, and in an even more dramatic way, the log

smoothes the changes in employment within industries across time, which means that the

expressions [17] and [12] are almost constant, since we also saw that the change over time

of the wage shares was smooth. Therefore, there is no need to compute a time series for

either ( )∆ within
MAX t t

+ +, 1  or ( )∆ within
MAX t t

− +, 1 . Their values are likely to be almost constant over

time. Furthermore, a time series of either [17] or [12] makes no sense, since, for example,

the Theil cannot jump from zero to the maximum from t to t+1, and then again from zero

to the maximum from t+1 to t+2. What would be meaningful would be one time-series in

which [12] and [17] alternate from one period to the next. But since we know that the

values are almost constant over time, we might as well compute averages over time.

Table 2 shows the average values for ( )∆ within
MAX t t

+ +, 1  and ( )∆ within
MAX t t

− +, 1 , in which

the computation was made using the exact formulas [11] and [12], and the averages are of

the monthly values over the entire period of time under consideration.

Table 2- Maximum Impact of the Maximum Changes over Time of Within Industry Inequality

( )∆ within
MAX t t

+ +, 1 ( )∆ within
MAX t t

− +, 1

Average (n=226) 12.51906 -12.52010

Standard Deviation 0.11943 0.11883

Table 2 confirms that [11] and [12] are symmetrical, and also, that their change over time

is low (note the low levels of the standard deviation). Clearly, these values are much above

the changes in between group Theil that we observe, which never surpass 0.00437 and are

never below –0.00270. But it is also clear that the values of Table 2 are highly unlikely to

correspond to a real evolution of the Theil index.
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From expression [10], or its simplified form [16], it is not possible to make any

further simplifications. In fact, the “strong” term ( )[ ]log n j •  is almost washed out in [16].

In this case, then, it is of interest to know what is the time evolution of [10], and to

compare it with the observed between industry Theil. Figure 5 compares what would be

the maximum change in of the overall Theil index if the levels of the within industry Theil

would remain at their maximum level.
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Figure 5- Comparison of the Observed between Industry change and the Maximum Theil change
when the Levels of Within Group Theil are at their Maximum.

Again, discrepancies exist, namely when the observed change is of a different sign of the

maximum possible change, but the overall pattern of evolution of the two series looks

quite similar.

In essence, we have built a framework of analysis to account for the “measure of

our ignorance” whenever only the between group component of a measure of inequality is

used.  Our aim conclusions, the aim was to show how this framework could be

implemented, and to illustrate this with real data. Further refinements of our analysis
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should include explicit consideration of more plausible within group distributions, rather

than the extreme cases we considered, which are unlikely to ever be found in practice.

From a conceptual point of view, how important is the within group component in

practice? We believe that when the underlying data set is drawn from industrial

classification schemes, the answer will generally be “not very important.” Industrial

classification schemes, after all, are designed to group together entities that are comprised

of firms engaged in similar lines of work, and firms, like all bureaucracies, tend to maintain

their internal relative pay structures comparatively stable from one period to the next.

Thus, the within-group variation of inequality will never approach the extreme case in

which all the income moves from equal distribution to concentration in a single individual,

the example of Michael Milken in the last years of Drexel Burnham Lambert to the

contrary notwithstanding. For this reason, we remain convinced that in practice the effect

of the unobservable component on the evolution of T will generally be very small. So long

as the group structure is sufficiently disaggregated so that changing population shares and

wage shares are not likely to dominate, the movement of T′ will closely approximate the

movement of T.  And it is obvious that as one moves toward a finer classification scheme,

T′ must necessarily converge toward T.

To complete the analysis proposed in section 4, we must isolate the population

effects. This we will do by fixing the employment structure to the beginning of the period.

This way we will compute a TF′, which gives the evolution of inequality under the

hypothetical situation of no changes in the structure of employment. Figure 6 presents the

results.
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Figure 6- Fixed and Variable T′ for Brazil.

Figure 6 shows the power of this simple procedure. Changes in TF′ follow changes

in T′ during most of the period under analysis, showing that wage changes have driven

most of the dynamic behavior of inequality. However, between 1982 and 1986 there is a

clear discrepancy. TF′ rose steadily, at what looks like a constant rate of change, but our

measured T′ rose much more sharply between 1982 and 1984, and even decreased

between 1984 and 1986. From then on, the changes are very similar. Therefore, we can

argue that during the 1982-1986 period, but particularly between 1984 and 1986, changes

in T′ were driven by changes in the employment structure, rather than by changes in

wages.

We have shown how it is possible to study the dynamics of inequality using Theil

indexes calculated from industrial wage data. The structure of the data required is

extremely simple, basically, only employment and wages or earnings by sector are

required. The wide availability of such data for many countries over long periods of time

opens new possibilities for the analysis of inequality dynamics.
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